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The first-order laminar shear layer between two parallel streams has been 
calculated exactly for compressible and incompressible two-dimensional flow. 
Turbulent flow has been included by using Prandtl’s hypothesis for the eddy 
viscosity. Results are presented for a wide range of the appropriate parameters. 
The problem is solved by writing the momentum and energy equations as a pair 
of coupled integral equations in Crocco variables; these are solved by the method 
of successive approximation after using a simple transformation to weaken the 
singularity at  the outer edges of the boundary layer. This approach yields 
uniquely the shear stress and temperature as functions of the tangential velocity 
ZL. The so-called third boundary condition, derived by Ting (1959), is then 
readily satisfied in evaluating the transverse component of velocity v by quadra- 
ture. Experimental results are presented in the turbulent incompressible case. 
Good agreement with the exact theoretical results is obtained when one stream 
is much faster than the other, but this falls off as the speeds of the streams tend 
to equalize. 

1. Introduction 
The free shear layer formed between two semi-infinite parallel streams of 

fluid has been the subject of considerable investigation, both theoretical and 
experimental. Laminar flow in this layer displays a marked instability to small 
disturbances (see, for example, Lessen 1949) and consequently in practice this 
layer is almost invariably turbulent. The laminar problem might then have 
assumed the position of an interesting yet difficult non-linear boundary-value 
problem were it not for the fact that by the aid of an apparent or eddy coefficient 
of viscosity it is possible to pose, with trivial mathematical differences, the 
turbulent problem alongside the laminar problem. Approximate solutions 
derived on the basis of an apparent viscosity coefficient are known to yield a 
reasonable overall description of the turbulent phenomenon. 

An analysis of the plane turbulent ‘half-jet’ (lower stream at rest) was given 
by Tollmien (1926) on the basis of Prandtl’s mixing length theory. Tollmien 
succeeded in reducing the problem to the solution of an ordinary third-order 
linear differential equation for the stream function f in terms of a similarity co- 
ordinate 7. There are, however, only two immediately obvious boundary con- 
ditions to apply, namely that the tangential velocity f‘ should approach the 



592 R. D. ~ i 1 1 ~  

outer flow speeds U,, U, as 7-+ co. Tollmien fixed his solution by making the 
transverse velocity v1 vanish at  the outer edge 7 + + co. Later, Kuethe (1935) 
extended these calculations to the mixing of two streams, using von KkmBn’s 
suggestion that the third boundary condition should correspond to zero net 
transverse force acting on the layer, viz. Ulvl+ U,v, = 0. Both of these authors 
succeeded in obtaining straightforward explicit solutions because of the simple 
linear differential equation that resulted from the form of the hypothesis used to 
describe the effects of turbulence. The non-linear laminar flow equation with 
boundary conditions of this type was still unsolved. 

On the basis of the hypothesis put forward by Prandtl that the eddy viscosity 
c is proportional to x and U, - U,, Gortler (1942) worked out a new theory for this 
problem. This theory brought the turbulent problem (for f ( 7 ) )  into coincidence 
with the laminar problem, in the case of incompressible flow. GGrtler solved the 
problem approximately by use of a power-series expansion in the parameter 
h = (Ul- U,)/(U,+ U,). The solution to first order in A, the ‘error function’ 
solution, has become well known throughout the experimental literature of the 
problem, as it gives a good approximation to the shape of the observed mean 
velocity profiles. By direct numerical integration and also by momentum- 
integral methods, Lock ( 1951) calculated the incompressible laminar mixing 
of two streams of different fluids. Lock rendered the problem unique by setting 
f (0) = 0 and assuming continuity of shear stress at  the interface of the streams. 
Crane (1957) extended Gortler’s work to compressible flow, using an expansion 
procedure involving A and the temperature parameter A’ = (T, - T,)/(Tl + T,). 
Though Crane derived analytical forms for the functions originally computed 
numerically by Gortler, his results are of limited general usefulness because of 
poor convergence of the series. 

Gortler, Crane and many others who have given solutions have avoided the 
question of the correct third boundary condition by (conveniently) fixing their 
solutions so that the line 7 = 0 corresponds to the mean speed *( U, + U,) of the 
streams. Lock also avoids the question by use of f ( 0 )  = 0. There is no a priori 
reason why either of these simplifications should correspond to theoretical (or 
physical) reality. In  incompressible flow (or laminar compressible flow with 
p cc T and Prandtl number P unity), there exists, in the absence of a third 
boundary condition, an infinite number of solutions in the (u, y)-plane, the 
difference between any two being equivalent to a shift of the velocity profile as 
a whole in the 7-direction. Mathematically, if f(7) is a solution satisfying the 
boundary conditions a t  7 = k co, then so is f ( 7  +a), where a is any constant. In  
turbulent incompressible flow one then has the freedom to raise or lower the 
curves bodily so as best to fit the experimental data; good ‘agreement’ has often 
been achieved in this way, for the shape of the experimental profiles tends to 
agree reasonably well with that of the theoretical profiles ! 

The indeterminateness arises from using the ordinary boundary-layer equa- 
tions instead of the full Navier-Stokes equations when solving this problem. 
This must have been apparent to von K k m h  and Kuethe, and it was clearly 
recognized by Crane in his (1957) paper. Ting (1959), however, appears to have 
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been the first to derive the appropriate third boundary condition to within the 
accuracy of the ordinary (first-order) differential equations of boundary-layer 
theory, by the now well-known method of matched asymptotic expansions. In  
essence, the third boundary condition requires that the second-order pressure 
differences occurring normal to the mixing layer balance across this region. For 
incompressible flow this means simply that there is zero net transverse force on 
the mixing layer; stated otherwise, the reactions of the upper and lower parts of 
this layer corresponding to their deflexions perpendicular to x are equal and oppo- 
site. For compressible flow the final conditions are conceptually more complicated. 

While Ting’s work has resolved the indeterminateness, the exact calculation 
of the mixing boundary layer in the general case remains a problem of some 
difficulty. A direct numerical approach would require (for the velocity layer) the 
solution of a third-order non-linear differential equation for f (7) with three 
boundary conditions, involving f and f ’  at 7 = k 03, for which there is no standard 
solution procedure. Alternatively, in incompressible flow (or laminar com- 
pressible flow with ,u cc T and P = l), the constant a can be determined from 
any one of the incompressible flow solutions which satisfy the correct boundary 
conditions on f’ at 7 = 2 03, e.g. the solutions of Lock (see appendix). In  the 
general compressible flow case this procedure will not work, for it is necessary to 
solve the velocity and thermal problems and impose the third boundary con- 
dition simultaneously owing to the coupling of thefields. 

Part of the purpose of the present paper has therefore been to obtain some 
exact numerical sohtions to this problem in both the general compressible and 
incompressible cases. The author’s interest in the Crocco forms of the boundary- 
layer equations (Mills 1966) led him to consider the problem from this point of 
view; it turns out that this approach has several advantages. For the moment it 
will be enough to remark that the shear stress function 7 ( x ,  u) can be determined 
by solving (by iteration) a non-linear integral equation into which are built the 
two boundary conditions of zero shear stress on either side of the mixing layer. 
This gives the unique solution for ~ ( x ,  u) in the most general case irrespective of 
the form of the third boundary condition. The third boundary condition is later 
satisfied, when determining the transverse velocity component v from ~ ( x ,  u) by 
quadrature. 

The present author could not find from diverse experimental results in the 
literature of this problem a series of tests uncommitted to theories assuming the 
velocity on the line 7 = 0 to be +.( U, + U,) or to other empiricisms. Consequently 
he decided to perform an experiment in the turbulent incompressible case to see 
if the solution determined on the basis of the correct third boundary condition 
agrees with observation. It was found that there was good agreement for large 
speed differences but this fell off as the speed differences became small. It must 
of course be borne in mind that such a comparison involves not only a test of the 
correctness of the third boundary condition but also a test of the validity of 
Prandtl’s hypothesis in describing the turbulent phenomenon. Nevertheless, 
the velocities on the line 7 = 0 are quite close to the theory for small speed 
differences as also are the complete mean velocity profiles. There is certainly 
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no justification from these tests for taking this velocity as +(U, + U.). It would 
therefore seem worth while to compare the theoretical results obtained in this 
paper for compressible flow with a reliable series of experimental tests. 

2. Boundary -layer equations 
Let u and v be the velocity components in the x- and y-directions (‘mean’ 

values being assumed for turbulent flow), and take the origin of co-ordinates 0 
at the point where mixing begins (see figure 1). Further, let ~ ( x ,  u)  be the shear 
stress, and i = cpT(x, u) the enthalpy per unit mass, where T is the temperature 
and cp the constant-pressure specific heat (assumed constant throughout the 

FIGURE 1. Mixing of two semi-infinite streams. 

mixing layer). If the pressure p ,  and i ,  are independent of x the equations of 
momentum and energy become in the Crocco formulation (see, for example. 
Van Driest 1959) 

(1) 

[ d (1 di) ] 
(1 &)a7 

+ 1  + ( l - P )  -- - -=o ,  7 - _ _  
du Pdu Pdu au 

where E is the kinematic viscosity coefficient = v = pip for laminar flow, and 
represents an apparent or eddy coefficient assumed independent of y when the 
flow is turbulent. The Prandtl number P equals cp,u/k for laminar flow and 
e / d  for turbulent flow, where pc,~’ is the so-called eddy coefficient of thermal 
conductivity; p, p, k are respectively the viscosity coefficient, density, and ther- 
mal conductivity coefficient of the fluid. The assumption of constant pressure 
throughout the field (at least to a first-order approximation) implies that 

p cc T-l, (3) 

p = Tw,  (4 

from the perfect-gas law. The viscosity-temperature variation is represented 
by a power law 
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which approximates to observation over a range of temperature dependent on the 
value of w ,  though it would be more accurate to use Sutherland’s law for each 
set of values of the temperatures considered. 

It is convenient to work with the non-dimensional variables 

U* = (u- &)/(q-- UZ), T* = (T-T2)/(Tl-T2),  (5) 

and to introduce the following parameters characterizing the speed- and tempera- 
ture-ratios of the streams : 

= u2/u,, = (U1- U,)/(U,+ U2) , }  
(6) 

r’ = T2/T,, A’ = (Tl-T2)/(Tl+T2).  

For compressible flow introduce numbers E and W such that 

E = U2/c,T = (7 - 1) M2,  W = 2Eh2( 1 + h’)/h’( 1 + (7) 

where M is the Mach number, and y is the ratio of the constant-pressure and 
constant-volume specific heats of the fluid. 

For laminar flow the condition of similarity implies the following form for r : 

r = rp1(” - “I3 ’ F(u*, A, A’, y ,  w ,  P, A?,). 
8hx I 

On the basis of Prandtl’s hypothesis for e,  

8 = K C X ( U 1 -  u2), 
similarity in turbulent flow implies the substitution 

7 = P I U K C (  u, - u2)2p(U*, h, h’, 7, P, M,), (8 ’ )  

where v is Gortler’s rate-of-spread parameter, and the constants 

K ,  C, A ( 4 h K C r 2  = 1) 

are taken over from Gortler’s (1942) solution. In  laminar flow the width of the 
mixing layer is proportional to x), whereas in turbulent flow it is proportional to 
x, the latter case being depicted in figure 1. 

Substitution of (8) or (8’) into (1)  leads to the following differential equation 
for F, 

( 9) 
1 + h’(2T* - 1) ( - 2  0 )  = o, 1 w - l o  -+2[ F 1 + A ’  

d2F 1 + A(~u* - I)] [ 
on utilizing equations (3)-(6). (In the matrix (aij) denoting the exponent of the 
non-dimensional temperature function the following convention for the values 
of the elements is used throughout: a,, = laminar compressible, a12 = laminar 
incompressible, a2, = turbulent compressible, u22 = turbulent incompressible. 
This device shows at a glance which power should be selected for any of the four 
given flow types.) The same substitutions in (2) lead to the differential equation 

for the thermal problem, on utilizing (7) .  
38-2 
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The boundary conditions 011 Hand T* are (see figure 1) 

(11) 
(.) (F = 0, u* = 0,) (b)(T* = 0, U* = 0,) 

F = 0 ,  u*= 1, T*= I, u*= 1. 

Condition ( a )  corresponds to the vanishing of the shear stress at  the outer edges 
of the mixing layer. It should be noted that the present formulation of the problem 
transfers the parameters A, A' (or r ,  r ' )  from the boundary conditions to the 
differential equations, which then have a fixed domain of integration. 

It is possible to write the boundary-value problems (9), ( lo ) ,  (11) in the form 
of a coupled pair of integral equations (this technique can in fact be usefully 
applied to more general problems in boundary-layer theory, see Mills 1966). It 
will suffice to quote the results; they are obtained by systematically integrating 
equations (9), (10) with respect to u* and incorporating the boundary conditions 
(1 1) at each step: 

/~'2u*[1+A(2u*-l)]  [ l+A'(2T*-l)  (?2;)du* 
mu*) 1 +A' -1 F(u*) = (1 - u*) 

0 

(12) 
1 + A(2u* - 1) 1 + h'(2T* - 1) ("-i" ;) dU*, 

U* F(u*)  ][%<Ar] 

where 
U* 

0 0 0 
R(u*) = s"' ,F(uyl[jU' [F(u)]'-rd.] du'. S(u*) = j [P(u*)]"-ldu*, 

These integrated forms can be checked to satisfy the boundary conditions (1  1) 
on inspection, and to satisfy the original differential equations (9), (10) on 
differentiation. In  general, each of the B, T*, R, S will be functions of u*, A, A', 
y ,  w, P, Ml as written out in full in (81, though the dependence on the parameters 
is not thereafter explicitly displayed. Equations (12) and (13) are coupled for 
compressible flow, unless o = 1 in the laminar case. 

The usefulness of the present formulation of the problem lies in providing a 
convenient algorithm for obtaining exact numerical solutions. This idea was 
first utilized by Crocco (1946) in his work on compressible flat plate boundary- 
layer flows. If the right-hand sides of (12), (13) are regarded as functions 
q52 of F ,  T* then the following iterative scheme may be used to solve these 
equations, 

A difficulty arises, however, in carrying out actual computations, for the differ- 
ential equation (9) with bouadary conditions (1 1 a), or the integral equation (12), 
has singularities of the type LJlog (1/c)]* at the outer edges of the mixing layer, 
corresponding to u* = 0 and u* = 1. One can ignore these altogether, or alterna- 
tively use the analytical solution in the neighbourhood of = 0 and join it to the 
solution obtained by iteration. The joining process is not trivial however (see 
Crocco 1946). Another approach is to employ a transformatiol: of the inde- 



Shear layer between two parallel streams 597 

pendent variable which weakens the singularities at the outer edges of the 
boundary layer, with a consequent improvement in numerical work. The equa- 
tions (12), (13) are written in terms of the new independent variable s defined by 

u* = 382 - 2s3. (15) 

F ( S )  (382- 2s3) [log (1 / (3~2-  2~3))]*, (16) 

The behaviour of P(s) in the neighbourhood of the singularities is now 

which is less singular than before in the sense that dFlds vanishes a t  s = 0,  1, 
whereas dF/du* is infinite at  u* = 0, 1. The singularities are still ‘ignored’ in 
that the extreme mesh points are taken at  negligible distances, say 10-lo, from 
the singularities themselves. This technique, however, yields significantly im- 
proved numerical results compared with those obtained in a similar manner 
from the untransformed equation in the case of the well-known ‘similarity’ 
flows of ordinary boundary-layer theory (Mills 1966). Consequently this approach 
was adopted for the present problem, though for clarity the development in 
terms of u* is retained throughout the text. As regards the integration formulae 
used to compute the integrals in (la),  (131, it was found that the Simpson rule 
used once on a given mesh, size h, provided an accuracy comparable to that ob- 
tainable from the trapezium rule on meshes of size 4h, 2h, h and extrapolating by 
Aitken’s formula. The Simpson rule was thus used for the present problem, 
though it must be borne in mind that after each iteration this involves the 
calculation of the values of the iterates at  the odd mesh points by interpolation. 
Almost any plausible solution can be used to start the iteration process, which 
converges rapidly if the arithmetic means of successive iterates are used as the 
next starting values (‘under-relaxation’). For simplicity P(O)(s) = s - s2, 
T*(O) = s were used as starting solutions. 

3. The third boundary condition 
The other useful feature of the present formulation is that it is possible to 

separate the problem of the imposition of the third boundary condition from the 
problem of solving the momentum and energy equations even in the most 
general case. The third boundary condition involves the normal component of 
velocity v, which is determined by quadrature subsequent to solving equations 

where uo, the velocity on y = 0,  has to be determined from the third boundary 
condition. If they had approached the problem from the present point of view, 
Gortler and Crane would at this stage have set (arbitrarily) uo = &(U, + U2). 

The results of Ting’s (1959) investigation to determine the third boundary 
condition are set out in the first two columns of table 1 for the case of completely 
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laminar or completely turbulent flow in the mixing layer. The first-order trans- 
verse velocities at the upper and lower edges of the mixing layer are denoted by 
v1 and v2 respectively. The simple and obvious extension has been made to the 
case where the densities of the streams are different. 

Nature of streams Third boundary condition a P 
(1) Incompressible flow, P1 UlV, +PZ uzvz = 0 r 1 

both streams 

both streams supersonic r' 
(2) Compressible flow, 

(3) Compressible flow, Vl = 0 - 

P1 U l V , ( W  - 1)) 

- 
stream 1 supersonic, 
stream 2 subsonic 

TABLE 1 

Ting's paper should be consulted for the details. It will suffice here to remark 
that Ting derives conditions ( 2 )  and (3) by assuming the terms of order R-) in 
the expansion of the flow outside the mixing layer to be governed by the equa- 
tions of linearized irrotational compressible flow. (R  is the expansion Reynolds 
number as defined in Ting's paper.) To establish a result for subsonic flow in 
both streams, Ting is obliged to carry on to terms of order R-3 in the expansion 
of the flow inside the mixing layer, the terms of order R-l vanishing as in in- 
compressible or subsonic flow past a semi-infinite flat plate. For simplicity Ting 
utilizes the y-component of the Navier-Stokes equation for incompressible flow 
in his analysis. This may be too drastic a simplification for an essentially com- 
pressible flow calculation and Ting's condition for subsonic flow in both streams 
may be in error; consequently no subsonic flow results were computed, though no 
additional difficulty would be encountered in satisfying the appropriate con- 
dition by the present methods. 

When (8) and (8') are substituted in (17 )  and the integral equation ( 1 2 )  is 
differentiated to obtain expressions for dP(O)/du* and dF( l ) /du* ,  the third 
boundary condition becomes 

1 

0 

( 1 8 )  

1 

0 
( 1  + h ) ~ (  1 , ~ : )  -s u*G(u*)du* + CL ( 1  - h)r(O, u:) +PI ( 1  - u*) G(u*)du*)  = 0, 

where 

and the similarity co-ordinate is obtained from (4)-(8) and ( 1 7 )  as 
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The values of a, 1 corresponding to the cases (1)-(3) are shown in table 1. Once 
the functions F(u*), T(u*) have been determined, equation (18 ) ,  say Z(ut) = 0 ,  
is solved numerically for the velocity ut on the line 7 = 0. The co-ordinate 
y(u*,  ug) is then obtained from (19) ,  and the solution to the first-order boundary- 
layer problem is completely specified. 

The local shear stress coefficient and local Nusselt number may be defined as 
cf = r/pl(Ul - U,)2 and N u  = qx/k,(T, - T,) respectively, where 

q = - kBT/By = - k ( d T ( u ) / d u )  (&lay) 

is the local heat transfer rate. From (8), (8') and (13) it follows that 

c = E'(u*), 

R( l ) / X (  1 )  - Iu* [ F ( ~ * ) ] l - ~ d u * ) l )  (20)  

0 

where C = 4hJ(Rxo)  cf, N = 2Nu/JRxo ,  R, = (Ul+ U2)x/2vl for laminar flow; 
C = 2 J 2 h 4 ( R x 0 ) c f ,  N = J 2 N u / J R x 0 ,  Rxo = (Ul+U,)x/2s for turbulent flow. 

The accuracy of the results for a given mesh size h is not uniform over the 
range of parameters considered in the paper. As a rule results obtained from two 
mesh sizes h and &h were consulted in preparing the tables, h being generally 
taken as 1/128. For a given h, a slight loss in accuracy occurs (compared with the 
other boundary-layer characteristics) in calculating q(u*, u;) from (19) ,  for it was 
necessary to use the trapezium rule to integrate to the nearest even node and 
then continue using the more accurate Simpson rule. This appears unavoidable 
without the use of a complicated quadrature scheme. Consequently the use of a 
very small mesh size was considered to be the best approach for this particular 
problem as no numerical instabilities were encountered on reducing the mesh size 
to low values. 

4. Incompressible flow 
The velocity and thermal problems are uncoupled and (12 )  may be solved 

independently of (13) which has W, = 0. The results of the computations for the 
velocity distribution are shown graphically in figure 3 for a range of speed-ratios 
r .  There is seen to be a distinct dependence of the solution in the (u*, 7)-plane on 
the parameter r .  As r approaches unity the velocity profiles approach a position 
of antisymmetry about the line 7 = 0. Numerical details of the solution are given 
in table 2. 

Figure 4 shows the temperature distribution as a function of Prandtl number. 
As in the flow past solid surfaces, the thermal boundary layer becomes progres- 
sively thinner compared with the velocity boundary layer as the Prandtl number 
increases. Note also that the thermal layer is driven more into the lower stream 
though the position of maximum heat transfer remains constant (see figure 5 
and table 3) and depends only on the velocity parameter r .  Figure 5 also contains 
shear stress distributions. It would be instructive to compare these curves with 
hot-wire measurements of shear stress in the turbulent case. 
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Experiment 

The apparatus used for the experimental investigation of the turbulent mixing 
of two incompressible streams is shown in figure 2. The apparatus was supplied 
from a 1000ft.3/min air-line of inside diameter 4in. The diffuser and contraction 
were divided in half by a 1 mm thick splitter plate. Control of the speed-ratio 

Air 

Aow 
- 

Parallel section (8 in. x 8 in.) with wire screens 
J 

cQ&- 
Splitter plate , 0 

A 
1 mm. 

h- 20 in. -4 I----- 15 in. ___If 
FIGURE 2. Plan view of mixing-layer apparatus. 

t 

?- 2 in. 

J. 

3 '  

1 I I I 
0 0 2  0 4  0.6 0 8  1.0 

FIGURE 3. Velocity profiles as function of speed-radio r in incompressible flow. 
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FIGURE 4. Temperature profiles as function of Prandtl number P in incompressible flow. 

T 

0 
*O 

0.1 
0.2 
0.3 
0.4 
0.5 
0.5014 

*0.5014 
0.6 
0.7 
0.8 
0.9 
1.0 

C m  

0.5648 
0.5646 
0.5651 
0.5650 
0.5648 
0.5646 
0.5644 
0.5644 
0.5643 
0.5643 
0.5643 
0.5642 
0.5642 
0.5642 

Um- U Z  
u,- u2 
0.5872 
0.5873 
0.5720 
0.5592 
0.5482 
0.5385 
0.5301 
0.5300 
0,5301 
0.5226 
0.5160 
0.5101 
0.5048 
0.5 

0.1871 
0.1871 
0.2151 
0.2222 
0.2131 
0.1920 
0.1631 
0.1627 
0.1627 
0.1301 
0.0956 
0.0617 
0.0296 
0 

Uo- u2 

UI- u2 

0.6914 
0.6915 
0.6914 
0.6825 
0.6666 
0.6455 
0.6213 
0.6210 
0.6211 
0.5956 
0.5698 
0.5449 
0-5215 
0.5 

TABLE 2. Mixing-layer characteristics as functions of speed-ratio r in incompressible flow. 
Suffix rn denotes maximum values. * denotes Lock’s (1951) values 
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was effected by a simple gate-valve as shown. The contraction (of ratio 2: 1) was 
designed by a method proposed by the author (Mills 1968). Three wire screens 
in the parallel section were sufficient to smooth out any large-scale eddying 
arising from the gate-valve. The aspect ratio of the flows at exit could be varied 
by the addition of liners contracting the flow in the vertical (z- )  direction. 

Experiments were made with aspect ratios 3: 1 and 2: 1 but there was found 
to be no significant change in the mean velocity profiles arising from this change 
(see figures 6-9). The velocities were measured by Pitot tube and some measure- 
ments were repeated with a ' Disa ' constant-temperature hot-wire anemometer 
(figure 9). 

Figures 6-8 show the experimental results compared with the theoretical 
curves for 3 different speed-ratios. In  this comparison it has been necessary to 
work out from the experimental results a virtual origin (xo) for the commence- 

r 

2 

1 

0 

-1 

-2  

-3 

-4 
0 0.2 0.4 0.6 0.8 PO 1 i! 14 

2c, N 

FIGURE 5 .  Shear stress and local heat transfer distributions across mixing layer in in- 
compressible flow. C = 4hJ(Rx0)cf ,  N = 2Nu]JRx0, R ,  = (U,+ U,)x/2v,  laminar 
flow; C = 2 $2 h J(R,) c,, N = 42 Nu/JRno, RZo = (77, + U,) x /2e  turbulent flow. 



Shear layer between two parallel streams 603 

r = 0, q ~ , , ,  = -0.1871 r = 0.5, TN,,, = -0.1631 r = 0.8, q ~ , , ,  = -0.0617 

P N7n 

0.2 0.227 
0-4 0.328 
0.5 0.375 
0.6 0.418 
0.72 0.466 
0.8 0.4962 
1.0 0.5648 
1.2 0.6266 
1.4 0.6831 
2.0 0.8304 
3 1.031 
5 1-345 

10 1.918 
20 2.723 

-J----7 

To - T2 
T, - T2 
0.716 
0.698 
0.694 
0.691 
0.690 
0.6898 
0.6914 
0.6946 
0.6984 
0.7117 
0.7340 
0.7725 
0.8400 
0.9136 

0.270 
0.359 
0-399 
0.437 
0.478 
0.5043 
0.5644 
0.6190 
0.6692 
0.8013 
0.9830 
1.271 
1.800 
2.547 

0.591 
0.599 
0.603 
0.607 
0.611 
0.6144 
0.6213 
0-6279 
0.6341 
0.6510 
0.6749 
0.7131 
0.7794 
0.8579 

7 

N m  

0.273 
0.361 
0.401 
0.438 
0.479 
0.5048 
0.5642 
0.6182 
0.6677 
0.7983 
0.9779 
1.263 
1.786 
2.526 

Y 
TO - T2 
TI - T2 
0.531 
0.535 
0.537 
0.539 
0.541 
0.5420 
0.5449 
0.5475 
0.5500 
0.5568 
0.5665 
0.5825 
0.6125 
0.6546 

TABLE 3. Thermal mixing-layer characteristics as functions of 
Prandtl number P in incompressible flow 
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FIGURE 6. Theoretical and experimental velocity profiles for r = 0 in turbulent incom- 
pressible flow. W = 3:l ( U ,  = 42 ft./sec at  U2 = 0) ,  CT = 10.4, c = 0,135, K = 0.0171, 
xo = -00-20 in. 0, +, v = readings at  x = 4, 6, 8 in. W = 2:l (U ,  = 55 ft,/sec at 
U z  = 0) ,  cr = 10.0, c = 0.141, K = 0.0178, zo = -0.18 in. 0 ,  x ,  A = readings at  
z = 5, 7, 9 in. d = x: theory, d = z+lxol experiment. ---, error function. 
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ment of mixing. In all cases this lay very close to the physical origin 0 because the 
(‘initial’) boundary layers on the splitter plate were very thin as a result of 
contracting the flow before allowing mixing to take place. The values of the 
constants CT, K ,  c, x, are shown in the figures. 

In the first two cases the agreement is very good. Note that the exact theoretical 
solution is somewhat nearer the experimental points than the usual ‘error- 
function’ approximation in the extreme parts of the mixing layer for r = 0 
(figure 6). In  this comparison the error-function curve has been placed so as to 

14 

0.8 

0.6 

0.4 

0.2 

l9* X 

d a 
+ 

X 
b 
a 

0 0.2 0.4 0.6 0.8 1.0 

r 

FIGURE 9. Theoretical and experimental velocity distributions on line TI = uy/x = 0 as 
functions of speed-ratio T in turbulent incompressible flow. B = 3: 1, +, D = Pitot, 
hot-wire readings a t  x = 6 in. W = 2:  1, x , a = Pitot, hobwire readings at  x = 7 in. 

pass through the correct velocity u0 given by the exact theory. In  the third case 
r = 0.6 the experimental points agree well with the shape of the theoretical curve 
but are displaced somewhat from this curve. This is a symptom of the effect 
shown in figure 9, where the velocity ug is depicted as a function of r .  Agreement 
is good up to about r = 0.4; thereafter the experimental points fall below the 
theoretical curve. It is not clear why this should happen, especially as some care 
was taken to ensure that the flows were exactly parallel at  exit. However, it may 
simply be that Prandtl’s hypothesis is much too simplified a description of the 
real nature of the turbulent mixing for r near unity. 
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5. Compressible flow 
The velocity and thermal problems are now coupled and it is necessary to 

iterate equations (12) and (13) in turn to obtain a solution. Apart from this there 
are no additional difficulties in obtaining solutions, rapid convergence occurring 
if the iterates are under-relaxed as in the incompressible case. 

Laminar 
- - - - - -- Turbulent 

Turbulent r’= 0.99 

FIGURE 10. Theoretical velocityprofiles as functions of Mach number M,. r = 0, r’ = 0-5, 
y = 1.4, w = 0.76, P ,  = 0.72, P ,  = 0.5. Middle two curves computed a t  r‘ = 0.99. 

The effects of Mach number on the flow are depicted in figures 10,11,  where all 
the other parameters have been held fixed. Even if these were identical the 
laminar and turbulent flow results would no longer coincide because of the 
different exponents (arising from the use of Prandtl’s hypothesis for turbulent 
flow) in the non-dimensional temperature function in (12). The laminar flow 
results were computed with P, = 0.72 and the turbulent flow results with 
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Pt = 0.5. (The latter figure was chosen on the basis of experimental work by 
Fage & Falkner (1932) and Reichardt (1944) on free turbulent flow.) 

As in the laminar boundary layer on a flat plate the velocity boundary layer 
thickens and the velocity profiles tend to become linear as MI increases. In  the 
turbulent case, the velocity profiles tend to crowd together near the lower 

2 

1 

0 

-1 

7 -2 

-3 

-4 

-5  

-6 

TIT, 

0 1.1 1.2 1.3 1.4 1.5 1.6 
I I 1 I I I 

Turbulent 

---- Turbulent TIT,, r’=O99 

__------  

1 1  I 
1 1  I 
1 1  I 

I 

La * I I I 
1 2 3 

FIGURE 11. Theoretical temperature profiles as functions of Mach number MI. r = 0, 
r’ = 0.5,  y = 1.4, w = 04’6, P ,  = 0.72, P, = 0.5. TIT, curves computed at  r’ = 0.99. 

edge of the mixing region. This difference has its origin in the large difference 
in the values of the exponents of the non-dimensional temperature function. 
In both cases, however, the mixing layer is driven progressively into the lower 
stream as H, increases. In  the temperature field (figure 11)  significant frictional 
heating does not occur for values of M, below about 2; thereafter, this effect 
steadily increases. This source of heat has the effect of reversing the direction of 
the net heat flux in the upper part of the mixing layer. Also included in figures 10, 
11 and in table 4 are the cases of nearly isothermal (r’ = 0.99) turbulent mixing 
at  N, = 2 and 4. These cases could readily be compared with experiment. 



W
 

r 0 0.
3 

0
.5

 
0.

7 
0.

9 

L
am

. 
0.

54
28

 
0.

56
08

 
0.

57
11

 
0.

57
92

 
0.

58
40

 

T
u
rb

. 
L

am
. 

T
u
rb

. 

0.
42

6 
0.

51
7 

0.
39

1 
0.

56
0 

0.
25

6 
0.

21
2 

0.
64

8 
0.

03
6 

-0
.0

22
 

0.
72

5 
-0

.1
09

 
-0

.1
87

 
0.

77
4 

-0
.1

63
 

-0
.2

60
 

L
am

. 

1.
15

6 
0.

86
3 

0.
66

0 
0.

53
0 

0.
49

7 

-
t

N
m

 

-
-
f
-
 

T
u

rb
. 

L
am

. 
T

u
rb

. 

0.
72

4 
1.

54
 

1.
27

 
0.

75
8 

0.
90

3 
0.

90
3 

0.
66

1 
0.

48
9 

0.
52

8 
0.

57
6 

0
,1

3
5

 
0.

14
7 

0.
55

3 
-0

.1
30

 
-0

.2
10

 

u
o
- 

u
, 

u
1
-
 
u
2 

-
-
-
h
-
-
7
 

L
am

. 
T

u
rb

 . 
0.

78
6 

0.
80

2 
0.

67
3 

0.
63

9 
0.

54
6 

0.
48

1 
0.

44
2 

0
-3

7
3

 
0.

38
5 

0.
32

4 

--
--

--
g 

1.
79

3 
1.

65
 

B B 

L
am

. 
T

u
rb

. 

1.
28

2 
1.

15
9 

0.
89

7 
0-

77
6 

0.
57

9 
0.

49
3 

%
 

0.
41

5 
0.

35
9 

D
 

2
; 

N
 

T
A

B
L

E
 5.
 M

ix
in

g-
la

ye
r 

ch
ar

ac
te

ri
st

ic
s 

as
 f

un
ct

io
ns

 o
f 

sp
ee

d
-r

at
io

 r
 i

n
 c

om
pr

es
si

bl
e 

fl
ow

. 
r' 

=
 0

.5
, 

y 
=

 1
.4

, 
w

 =
 0

.7
6,

 
&

 

T
 

01
 

rn
 

P
, 
=

 0
.7

2,
 P

, 
=

 0
.5

, 
M

, 
=

 4
 

Q
 2 

w
 

w
 

43
 

0
 

W
 



-
-
-
a
-
 

r’
 

L
am

. 
T

ur
b.

 
L

am
. 

T
u

rb
. 

L
am

. 
T

u
rb

. 
L

am
. 

T
u

rb
 . 

L
am

. 
T

u
rb

 . 
0.

2 
0.

54
86

 
0.

47
3 

0.
46

2 
0.

36
5 

0.
85

5 
0.

63
9 

1.
32

4 
1.

18
7 

0.
77

5 
0.

77
4 

0.
4 

0.
54

46
 

0.
43

9 
0.

49
9 

0.
38

3 
1.

02
1 

0.
67

4 
1.

46
6 

1-
24

0 
0.

78
3 

0.
79

4 
0.

6 
0.

54
10

 
0.

41
4 

0.
53

6 
0.

39
8 

1.
36

2 
0.

81
2 

1.
61

7 
1.

29
4 

0.
79

0 
0.

80
9 

0.
8 

0.
53

77
 

0.
39

3 
0.

57
2 

0.
41

2 
2.

40
3 

1.
30

4 
1.

77
7 

1.
35

0 
0.

79
6 

0.
82

1 

TO
 -
 T2
 

T
I
 -
 T
,
 

w
 

L
am

. 
T

u
rb

. 
ku

 
1.

41
9 

1.
32

7 
b

 
1.

62
8 

2.
03

9 
1.

85
7 

*.
 

3.
26

2 
2.

86
5 

p
 

1.
51

2 
* k 

T
A

B
L

E
 6.
 M

ix
in

g-
la

ye
r c

ha
ra

ct
er

is
ti

cs
 a

s 
fu

nc
ti

on
s 

of
 t

em
p

er
at

u
re

-r
at

io
 r’

 
in

 c
om

pr
es

si
bl

e 
fl

ow
. 

r 
=

 0
, 

y 
=

 1
.4

, 
o
 =

 0
.7

6,
 P

, 
=

 0
.7

2,
 P

, 
=

 0
.5

, 
M

, 
=

 4
 



7
 

P
 

L
am

. 

0.
2 

0.
55

2 
0.

4 
0.

54
6 

0.
6 

0.
54

38
 

0.
8 

0.
54

23
 

1.
0 

0.
54

12
 

1.
2 

0.
54

04
 

2.
0 

0.
53

82
 

Q
m
 

w
 

T
u

rb
. 

0.
47

2 
0.

43
5 

0.
41

9 
0.

40
87

 
0.

40
05

 
0-

39
37

 
0.

37
36

 

-
 r
c
m
 

L
am

. 

0.
42

4 
0.

49
7 

0.
51

4 
0.

51
9 

0.
52

2 
0.

52
5 

0.
53

2 

J
-
-
-
-
-
 

T
u

rb
. 

0.
35

5 
0.

38
9 

0.
39

1 
0.

38
8 

0.
38

5 
0.

38
3 

0.
37

5 

N
m

 

I
 

L
am

. 

0.
44

0 
0.

73
6 

1.
00

7 
1-

25
0 

1.
47

1 
1.

67
2 

2.
35

3 

J
L
_
c
7
 

r 
T

u
rb

. 

0.
39

2 
0.

61
7 

0.
82

6 
1.

01
4 

1.
18

4 
1.

33
8 

1.
86

3 

L
am

. 

1.
66

 
1.

64
 

1
-5

8
 

1.
51

9 
1.

47
4 

1.
43

8 
1.

34
4 

T
u

rb
. 

1.
45

 
1.

32
 

1.
22

 
1.

15
1 

1.
09

7 
1-

05
4 

0.
94

0 

L
am

. 

0.
77

6 
0.

79
0 

0.
78

8 
0.

78
5 

0.
78

20
 

0.
77

95
 

0-
77

26
 

T
u
rb

. 

0.
78

0 
0.

79
9 

0.
80

2 
0.

80
3 

0.
80

38
 

0.
80

44
 

0.
80

78
 

L
am

. 

1.
44

 
1.

65
 

1.
74

8 
1.

81
8 

1,
87

3 
1.

91
7 

2.
03

8 

T
u

b
. 

2 
1.

41
 

1.
60

 
1

-6
9

3
 

3 
1.

76
0 

1.
81

3 
~ 

1.
85

6 
1.

96
7 

8 8 B N
 

N
 

T
A

B
L

E
 7.
 M

ix
in

g-
la

ye
r c

ha
ra

ct
er

is
ti

cs
 a
s 

fu
nc

ti
on

s 
of

 P
ra

n
d

tl
 n

um
be

r 
P

 i
n

 c
om

pr
es

si
bl

e 
fl

ow
. 

r 
=

 0
, 

r' 
=

 0
.5

, 
y 

=
 1

.4
, 

w
 =

 0
.7

6,
 M

, 
=

 4
 

8 2 



612 R. D. Mills 

Figures 12, 13 show the effect of varying the speed-ratio r with all the other 
parameters fixed. In this case conditions (2) and (3) in table 1 are covered as r 
increases from zero. As the speeds of the streams tend to equalize the mixing 

I 
I I I I I 

-1  

1 
7 

0 

-1 

-2 

24- u, 
u, - u, 

FIGURE 12. Theoretical velocity profiles as functions of speed-ratio r .  r' = 0.5, y = 1.4, 
o = 0.76, P ,  = 0.72, Pt = 0.5, M i  = 4. 

W 

0.50 0.5202 0.495 1.117 1.477 0-789 1.785 
0.75 0.5419 0.517 1,165 1.538 0.786 1.792 
1.00 0.5648 0.539 1-194 1.602 0.784 1.800 
1.25 0-5890 0.563 1-237 1.670 0.781 1.808 
1.50 0.6146 0.588 1.282 1.742 0-779 1.815 
2.00 0.6700 0.642 1.380 1.90 0.774 1-830 

TABLE 8. Mixing-layer characteristics &B functions of temperature exponent o in laminar 
compressible flow. r = 0, r' = 0.6, y = 1-4, P ,  = 0.72, M ,  = 4 
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layer moves more into the upper stream; in fact M2 > MI for r > J2/2  with 
r' = 0.5. Little frictional heat is generated within the thermal layer until r 
becomes less than about 0.5. The mixing-layer characteristics are given quanti- 
tatively in table 5. 

3 

2 

1 

0 

7 -1 

-2 

-3 

-4 

-5 
0 

1 I 

' I '  

i 

- Laminar 

Turbulent ------- 

0.5 1.0 15 

T-T ,  

T1- T ,  

0 

FIGURE 13. Theoretical temperature profiles as functions of speed-ratio r .  r' = 0.5, 
= 1.4, w = 0.76, P,  = 0.72, P, = 0.5, M I  = 4. 

0 0.5 4 1.10 0.5648 0.545 1.521 1.538 0.7791 1-880 
*O 0.5 4 1.10 0.5646 0.547 1.522 1.541 0.7791 1.881 
0.5014 0.8 4 0.388 0.5644 0.187 1.275 0-795 0-6241 1.557 

*0*5014 0.8 4 0.388 0.5643 0.186 1.276 0-798 0.6241 1.557 

TABLE 9. Comparison of laminar compressible mixing-layer characteristics with those 
derived from Lock's (1951) results* for y = 1.4, o = 1, P ,  = 1 
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Numerical tests were also made on the effects of the other parameters. As 
would be expected, the temperature-ratio r’ has only a slight effect on the ve- 
locity boundary layer (see table 6 and figure 10). The effect of Prandtl number 
on cf (table 7) is less pronounced than that of the temperature exponent w 
(table 8). 

6. Concluding remarks 
The problem of the first-order mixing layer between parallel streams is 

rendered unique by information derived from the higher-order terms in the 
asymptotic expansion of the full Navier-Stokes equations. The exact calculation 
of this shear layer in the general case is not straightforward, however. In  this 
paper it has been calculated exactly by an integral equation approach based on 
Crocco’s forms of the boundary-layer equations. 

Two-dimensional incompressible turbulent mixing of two streams of air has 
been investigated experimentally for a range of speed-ratios, and good agree- 
ment with the theory has been observed for low values of r .  There is no evidence 
from this experiment for taking the velocity uo on the line 7 = 0 as &( Ul + U,) as 
has often been done in theoretical investigations.It would therefore be instructive 
to compare with experiment the theoretical results presented in this paper for 
turbulent compressible flow. 
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Appendix 
It is possible to check the present results against those obtained by Lock 

(1951) in certain special cases. This is quite straightforward in incompressible 
flow. Let the stream function be given by = (v lUlx)~f (? j+a) ,  where Lock’s 
similarity co-ordinate is given by ?j = y( Ul/vlx)* and u is the unknown constant 
to be determined by the condition (1) of momentum balancing in table 1. From 
the asymptotic representations of f(7 + a)  
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where b, and b, are known constants from Lock’s solution. The equation to 
determine a is then simply a( 1 + r2) = - b, - r%,. (23) 

The value of a is immediately obtainable from the present computations as 
Irc,l x S*/(l +r)*,  the factor arising from the difference in normalizations. In  
the case of r = 0 this gives a = 0.5292 compared with 0.5289 from (23) using 
Lock’s solution. Full comparisons are shown in table 2 for r = 0 and r = 0.5014. 

For compressible flow it is necessary to employ the Howarth-Dorodnitsyn 
transformation - 

11.(x, Y) + w x ,  71, y = J” (P/P,)cly 
0 

to effect a comparison. Similarity in compressible flow means the stream function 
takes the form 

Y = (v,U,X)*~(H), H = B + A ,  .R = T(Ul/V1x)*, (24) 

and hence u = aY/aF = U, f ’ ( H ) ,  TIT, = g(H) ,  

v = -aY/ax = 1 2 x  (s)4 [ g ( H ) { ( H - A ) f ’ - f ) - f ’ / H ( H - A ) g ’ d H ] ,  A 

(256 ,b )  
(see, for example, Stewartson 1964). With the aid of the asymptotic forms 
(g la) ,  (22a) the third boundary condition can be written 

where a is the constant from table 1. This equation must be solved for the un- 
known constant A and is the equivalent of the present equation (19). 

In  general it would be necessary to solve the momentum and energy equations 
simultaneously with satisfying this condition. However, for the case w = 1, 
P = 1 it is possible to determine the solution completely from Lock’s results 
since g ( H )  is then a quadratic function off’@) (Crocco’s law): 

which satisfies T(w) = T,, T(  -CO)  = T2. 
Two cases were worked out in detail corresponding to Lock’s solutions for 

r = 0 and r = 0.5014. To avoid solving (26)  numerically for A ,  the value of A is 
determined from the present solution. This is achieved by interpolating Lock’s 
velocity profiles, for A is the value of H where Lock’s u(R)/U, is equal to u0/U, as 
determined from the present solution. Equation (26) was then checked with this 
value of A ,  and all the other characteristics worked out. In  particular, the co- 
ordinates qcm, 7jcm of maximum shear stress are obtained from 

The comparison is displayed in full in table 9. Note that the shear stress and local 
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heat transfer functions in Lock’s normalization are smaller than their counter- 
parts in the present paper by the factors s*/( 1 + r)* (1 - r )  and s*/( 1 + r)* (1 - r’)  
respectively. 

Finally, in compressible flow having Prandtl number unity the locus of zero 
heat transfer (dT*/du* = 0) can easily be shown from equation (13) to be 

u;=,(I+$). 1 

A few points determined numerically by the present method were checked to lie 
on this curve. 

REFERENCES 

CRANE, L. J. 1957 J .  Fluid Mech. 3, 81. 
CROCCO, L. 1946 Monographie Scientifiche di Aeronautica, 3. 
FACE, A. & FALKNER, V. M. 1932 Appendix to G. I. TAYLOR, Proc. Roy. Soo. A 135,685. 
G~RTLER, H. 1942 Z A M M  22, 244. 
KUETHE, A. 1935 J .  Appl. Mech. 2, A87. 
LESSEN, M. 1949 N A C A  T N  1929. 
LOCK, R. C. 1951 Quart. J .  Mech. Appl. Math. 4, 42. 
MILLS, R. D. 1966 Rept. Memor. aero. Res. Counc., Lond. no. 3515, 
MILLS, R. D. 1968 Aero. Quart. 19, 91. 
REICHARDT, H. 1944 Z A M M  24, 268. 
STEWARTSON, K. 1964 The Theory of Laminar Boundary Layers in Compressible Fluids. 

TING, L. 1959 J .  Math. Phys. 38, 153. 
TOLLMIEN, W. 1926 Z A M M  6, 468; N A C A  T M  1085 (1945). 
VAN DRIEST, E.  R.  1959 Article in C. C. LIN (Ed.) Turbulent Flows and Heat Tramfer, 

Oxford University Press. 

vol. v, Oxford: Princeton series. 


